Информация о статье

Количество просмотров: 395


Pikhitsa P., Seoul National University, Seoul 151–744, South Korea, peter@snu.ac.kr

Год 2016 Номер журнала 2 DOI 10.21603/2500-1418-2016-1-2-126-131
Аннотация A Bose-Einstein condensate of bosons with repulsion, described by the Gross-Pitaevskii equation and restricted by an impenetrable «hard wall» (either rigid or flexible) which is intended to suppress the «snake instability» inherent for dark solitons, is considered. The Bogoliubov-de Gennes equations to find the spectra of gapless Bogoliubov excitations localized near the «domain wall» and therefore split from the bulk excitation spectrum of the Bose-Einstein condensate are solved. The «domain wall» may model either the surface of liquid helium or of a strongly trapped Bose-Einstein condensate. The dispersion relations for the surface excitations are found for all wavenumbers along the surface up to the »free-particle» behavior , the latter was shown to be bound to the «hard wall» with some «universal» energy .
Ключевые слова a Bose-Einstein condensate, the Bogoliubov-de Gennes equation, the Gross-Pitaevskii equation
Информация о статье Дата поступления 21 сентября 2016 года
Дата принятия в печать 15 октября 2016 года
Дата онлайн-размещения 30 декабря 2016 года
Выходные данные статьи Pikhitsa P. EXACT SOLUTIONS FOR THE DISPERSION RELATION OF BOGOLIUBOV MODES LOCALIZED NEAR A TOPOLOGICAL DEFECT- A HARD WALL - IN BOSE-EINSTEIN CONDENSATE. Science Evolution, 2016, vol. 1, no. 2, pp. 126-131. doi:10.21603/2500–1418–2016–1–2–126–131.
Загрузить полный текст статьи
Список цитируемой литературы
  • Gross E.P. Unified Theory of Interacting Bosons. Phys. Rev., vol. 106, no. 1, 1957, pp. 161-164.
  • Pitaevskii L., Stringari S. Bose Einstein Condensation. Oxford: Clarendon Press, 2003. 382 p.
  • Zakharov V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Journal of Applied Mechanics and Technical Physics, 1968, vol. 9, no. 2, pp. 190-194. doi:10.1007/BF00913182.
  • Dziarmaga J. Quantum dark soliton: Nonperturbative diffusion of phase and position. Phys. Rev. A, 2004, vol. 70, pp. 35-59.
  • Chen X.J., Chen Z.D., Huang N.N. A direct perturbation theory for dark solitons based on a complete set of the squared Jost solutions. J. Phys. A: Math. Gen., 1998, vol. 31, pp. 69-29.
  • Gennes P.G., Saint-James D. Elementary excitations in the vicinity of a normal metal-superconducting metal contact. Phys. Lett., 1963, vol. 4, pp. 151-152.
  • Garay L.J., Anglin J.R., Cirac J.I, Zoller P. Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates. Phys. Rev. Lett., 2000, vol. 85, pp. 46-43.
  • Larré P.-É., Recati A., Carusotto I., Pavlòff N. Quantum fluctuations around black hole horizons in Bose-Einstein condensates. Phys. Rev. A, 2012, vol. 85. doi: 10.1103/PhysRevA.85.013621.
  • Shams A., DuBois J.L., Glyde H.R. Localization of Bose-Einstein Condensation by Disorder. J. Low Temp. Phys., 2006, vol. 145, pp. 357-367.
  • Griffin A., Stringari S. Collective Excitations of a Trapped Bose-Condensed Gas. Phys. Rev. Lett., 1996, vol. 76, pp. 2360-2363.
  • Anglin J.R. Local Vortex Generation and the Surface Mode Spectrum of Large Bose-Einstein Condensates. Phys. Rev. Lett., 2001, vol. 87. doi: 10.1103/PhysRevLett.87.240401.
  • Kuznetsov E.A., Turitsyn S.K. Soliton instability and collapse in media with defocusing nonlinearity. Sov. Phys. JETP, 1988, vol. 67, pp. 119-129.
  • Indekeu J.O., Schaeybroeck B. Extraordinary Wetting Phase Diagram for Mixtures of Bose-Einstein Condensates. Phys. Rev. Lett., 2004, vol. 93. doi: 10.1103/PhysRevLett.93.210402.
  • Kuga T., Torii Y., Shiokawa N., Hirano T., Shimizu Y., Sasada H. Novel Optical Trap of Atoms with a Doughnut Beam. Phys. Rev. Lett., 1997, vol. 78, pp. 4713-4716.
  • Pikhitsa P.V. Surface excitations of a nonideal bose gas. Physica B, 1992, vol. 179, pp. 201-207.
  • Muryshev A.E., Heuvel H.B. van Linden, Shlyapnikov G.V. Stability of standing matter waves in a trap. Phys. Rev., 1999, vol. 60, R2665.
  • Pitaevskii L.P. Properties of the Spectrum of Elementary Excitations near the Disintegration Threshold of the Excitations Sov. Phys. JETP 13, 1961, vol. 451, pp. 830-838.
  • Landau L.D., Lifshits E.M. Quantum Mechanics. NY: Pergamon Press, 1977. 691 p.
  • Tirao J.A. The matrix-valued hypergeometric equation. PNAS, 2003, vol. 100, pp. 8138-8141. doi: 10.1073/pnas.1337650100.
  • Jódar L., Cortés J.C. Some properties of Gamma and Beta matrix functions. Appl. Math. Lett., 1998, vol. 11, no. 1, pp. 89-93.

Copyright © 2016, KemSU. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and statesitslicense. This article is published with open access at http://science-evolution.ru.

Подписка на рассылку

Подпишитесь на рассылку содержаний новых выпусков.

Последний выпуск: Science Evolution, Vol. 2, no. 1, 2017